Shouldn’t it be called “The Great Wall of Vulva”?

It looks like I missed my chance — I think this place was only a few blocks from the hotel where I stayed in Brighton a few weeks ago. An artist has put together a montage of 400 casts of women’s personal bits, called The Great Wall of Vagina. It’s impressive and rather pretty.

You know, I’ve been planning some research on natural variation in populations, and I’ve been looking into variation in limb morphology as an easy assay…but man, I’m looking at that and thinking there’s an even bigger reservoir of natural varieties right here in the human population. Somebody ought to do a study on that — preferably with a multigenerational sample and sibling comparisons to to see how much of it is heritable. We’d need to develop some standardized metrics, though, and it would probably be a much bigger project than I could handle at this point in my career, not to mention the strain it would put on the eyebrows of the human research review committee.

I did take a quick scan of the research literature, but only came up with this one source that mentions the paucity of research in this field.

Howarth H, Sommer V, Jordan FM (2010) Visual depictions of female genitalia differ depending on source. Med Humanit 36(2):75-9.

Very little research has attempted to describe normal human variation in female genitalia, and no studies have compared the visual images that women might use in constructing their ideas of average and acceptable genital morphology to see if there are any systematic differences. The objective of the present work was to determine if visual depictions of the vulva differed according to their source so as to alert medical professionals and their patients to how these depictions might capture variation and thus influence perceptions of ‘normality’. A comparative analysis was conducted by measuring (a) published visual materials from human anatomy textbooks in a university library, (b) feminist publications (print and online) depicting vulval morphology and (c) online pornography, focusing on the most visited and freely accessible sites in the UK. Post hoc tests showed that labial protuberance was significantly less (p<0.001, equivalent to approximately 7-14 mm) in images from online pornography compared to feminist publications. All five measures taken of vulval features were significantly correlated (p<0.001) in the online pornography sample, indicating a less varied range of differences in organ proportions than the other sources where not all measures were correlated. Women and health professionals should be aware that specific sources of imagery may depict different types of genital morphology and may not accurately reflect true variation in the population, and consultations for genital surgeries should include discussion about the actual and perceived range of variation in female genital morphology.

Somebody get to work on this! The artists are beating the scientists to the data!

The focus so far has been on the perception of the female genitalia, but it seems to me the really interesting question is in the source of these amazing variants.

Jonathan MacLatchie really is completely ineducable

It’s like talking to a brick wall: MacLatchie is appallingly obtuse. When last I argued with him, I pointed out that the major failing of his entire developmental argument against evolution was that it was built on a false premise. As I said then,

I can summarize it with one standard template: “Since Darwinian evolution predicts that development will conserve the evolutionary history of an organism, how do you account for feature X which doesn’t fit that model?” To which I can simply reply, “Evolution does not predict that development will conserve the evolutionary history of an organism, therefore your question is stupid.” It doesn’t matter how many X’s he drags out, given that the premise is false, the whole question is invalid.

So now MacLatchie revisits the debate, and what does he do? He just reiterates his flawed premises!

For those who want the bottom line, here it is. Myers thinks I’m worried about Haeckelian recapitulation. But that’s completely wrong. Neo-Darwinism itself predicts that early development, starting with fertilization, should be conserved.

And then just to make himself look even more stupid, he restates it in simple-minded logical terms.

The logic of my position takes a modus tollendo tollens form of argument:

A

1 If P then Q
2 ~ Q
3 ~ P

By instantiation in A

B

1 If the theory of common descent is true then early developmental stages should be conserved.
2 Early developmental stages are not conserved.
3 The theory of common descent is not true.

The argument is impeccable: Whence the disagreement?

And as if that were not enough, he closes his post by reiterating a variation of the same argument:

C

1 If the theory of common descent is true then mutations to early developmental stages should be beneficial.
2 Early developmental mutations are not beneficial.
3 The theory of common descent is not true.

Good god. After I lectured him about how early developmental stages are not conserved, after I wrote the same thing, after I posted a refutation of his claims by pointing out that his premise is false, he somehow thinks he can win me over by repeating his premises a little more loudly?

Let’s make this equally simple-minded and clear.

Neo-Darwinism does not predict that early development will be conserved.

If it did, since it is trivially observable that there is wide variation in the status of the embryo at fertilization, then neo-Darwinism would be refuted, and would have been falsified prior to its formulation. Yet somehow, people like me, like Pere Alberch who he cited last time and like Rudy Raff who he cites this time, have no problem with evolution while openly discussing the divergence in early embryos.

Think about that, MacLatchie. Isn’t it obvious that you must be missing something?

Here’s another counter-example: Ernst Mayr, about as authoritative a source as you can find on the neo-Darwinian synthesis, wrote a very negative assessment of the likelihood of any molecular homology in the 1960s, before lots of sequence information became available.

Much that has been learned about gene physiology makes it evident that the search for homologous genes is quite futile except in very close relatives (Dobzhansky 1955). If there is only one efficient solution for a certain functional demand, very different gene complexes will come up with the same solution, no matter how different the pathway by which it is achieved (Mayr 1966:609).

Mayr died in 2005, at a time when there was a wealth of comparative information on the ubiquity of conserved genes in development: not only wasn’t conservation of homologous developmental genes a prediction of evolutionary theory, but discovery that there were homologous sequences didn’t induce Mayr to recant evolution on his deathbed.

Is it sinking in yet?

Neo-Darwinism does not predict that early development will be conserved.

It is just freakin’ bizarre to see these guys falling all over themselves to declare that a specific prediction of evolutionary theory has been falsified, when they can’t even comprehend that it is the scientists studying the phenomenon who are handing them all the data that they think invalidates the scientists’ science. The closest thing I can find to it is those crazy creationists who claim that evolutionary theory requires junk DNA, so every time a minor function for any piece of DNA is found, they can claim evolution is refuted.

MacLatchie is hopelessly confused. That early stages should be more resistant to change is not a prediction of evolutionary theory; it’s an inference from molecular genetics, that genes at the base of a long chain of essential interactions ought to be less likely to vary between species. What that doesn’t take into account is that genes are part of the great cloud of environmental interactions that go on to generate a selectable function, and that if the environment in which the gene is expressed changes, it can enable great changes in the activity of the gene.

These early genes are a classic example of this phenomenon: what we see in many lineages is variation in the degree of maternal investment in the egg. It can be yolky, it can be low in yolk, it can have cytoplasmic determinants directly imbedded by maternal factors in the egg, or it can be mostly uniform and regulative. The early zygotic genes can be freed up for evolutionary novelties if their functions are assumed by maternal genes, so we can correlate a lot of this variation with variation in maternal investment.

It wouldn’t be a creationist paper without a quote mine, and MacLatchie does not fail: he quotes Rudolf Raff to support his claims. Rudolf Raff! One of the founders of the whole field of evo-devo! Dragooned into supposedly supporting an Intelligent Design creationism claim! These guys have no shame at all.

Unfortunately, I haven’t read the specific paper MacLatchie cites, but I’m familiar with the work: this is Raff’s beautiful examination of two closely related urchin species, Heliocidaris erythrogramma and H. tuberculata, which are practically indistinguishable in their adult morphology but have radically different embryos. Here’s the abstract, at least, from the paper MacLatchie chose to distort:

Larval forms are highly conserved in evolution, and phylogeneticists have used shared larval features to link disparate phyla. Despite long-term conservation, early development has in some cases evolved radically. Analysis of evolutionary change depends on identification of homologues, and this concept of descent with modification applies to embryo cells and territories as well. Difficulties arise because evolutionary changes in development can obscure homologies. Even more difficult, threshold effects can yield changes in process whereby apparently homologous features can arise from new precursors or pathways. We have observed phenomena of this type in closely related sea urchins that differ in developmental mode. A species developing via a complex feeding larva and its congener, which develops directly, have different embryonic cell lineages and divergent patterns of early development, but converge on the adult sea urchin body plan. Despite differences in embryonic developmental pathways, conserved gene expression territories are evident, as are territories whose homologies are in doubt. The highly derived development of the direct developer evidently arises from an interplay of novel organization of the egg, loss of expression of regulatory gene involved in production of feeding larval features, and changes in site and timing of expression of a number of genes.

I’ve highlighted the relevant part of the story for poor blind MacLatchie. One species is a direct developer: it lays a large yolk-rich egg which develops directly into the round spiky adult form. The other is an indirect developer, which lays a less yolky egg which first forms a feeding ciliated larva which swims about eating before making a metamorphosis into the adult form. These are radically different embryonic forms.

Gosh, I guess evolution is false.

But no! Remember, neo-Darwinism does not predict that early development will be conserved.

The explanation is given right there in Raff’s abstract, which MacLatchie must have read, and equally obviously must not have understood. Raff does, though: he understands that there were evolutionary changes in “novel organization of the egg, loss of expression of regulatory gene involved in production of feeding larval features, and changes in site and timing of expression of a number of genes,” all phenomena entirely compatible with evolutionary theory.

As one last instance of the muddled logic of Jonathan MacLatchie, I will leave you with two quotes from him. The first is from his last article on this subject:

At best, all his case demonstrated was common ancestry — a proposition which is perfectly compatible with intelligent design.

This is a common statement from creationists like Behe, who also say they have no problem with common descent, it’s just that they don’t accept that mutation and selection and natural processes could possibly have done the job. So MacLatchie is just stating the nominal, default, superficial position of many Intelligent Design creationists.

This time around, though, he says this:

If common descent is true, however, early development must somehow evolve via mutations.

Oh, really? Which is it going to be? Does he think common descent is true or not true?

He doesn’t need to answer, I already know it: whichever claim suits his current rhetorical purposes.

Cutting off their noses to spite their faces

Animal Aid, one of those mindless animal rights organizations, has just called on everyone in the UK to stop donating to specific medical charities, because they sponsor research that uses animals. I can sympathize with the goal of minimizing suffering in animals, but this is ridiculous: the subjects of these research programs simply can’t be approached without using animal models.

The charities targeted are Cancer Research UK, the

British Heart Foundation, the

Alzheimer’s Society and

Parkinson’s UK. If you’re in the UK, make a special effort to donate to these worthy organizations, to counter the misplaced anti-science campaign of these confused and ignorant people.

Or if you think Animal Aid is right, then how about volunteering your brains and hearts and bodies for the experimental work without which progress in treating these diseases cannot be made.

Geekiest website ever

It’s the Holotypic Occlupanid Research Group. “Occlupanid”, in case you weren’t familiar with the lingo, is the taxonomic term for bread ties, those little plastic clips used to close up plastic bread sacks. There is more than you ever wanted to know about bread ties at that link.

It’s actually rather thought provoking: it’s an entire classification scheme for a trivial industrial widget.

Further panning of the arsenic life claims

Science magazine has published the formal criticisms of the claim to have found extremophiles that substituted arsenic for phosphorus in their chemistry. It’s a thorough drubbing, and the most disappointing part is that Wolfe-Simon’s rebuttal simply insists that they were right, and doesn’t even acknowledge that many valid criticisms of the study were made. That’s not how you do it. Instead, she should answer the complaints by saying that they will do the experiments in a way that specifically addresses the perceived shortcomings of the study; she and her lab have their credibility invested in this research now, and the answer to the barrage is not to batten down the hatches and do nothing, but to do more experiments to show that the critics are wrong.

Nature also has a discussion of the issues, and this article bothered me in other ways. It rationalizes not doing anything to replicate or refute the work.

However, most labs are too busy with their own work to spend time replicating work that they feel is fundamentally flawed, and it’s not likely to be published in high-impact journals. So principal investigators are reluctant to spend their resources, and their students’ time, replicating the work.

“If you extended the results to show there is no detectable arsenic, where could you publish that?” said Simon Silver of the University of Illinois at Chicago, who critiqued the work in FEMS Microbiology Letters in January and on 24 May at the annual meeting of the American Society for Microbiology in New Orleans. “How could the young person who was asked to do that work ever get a job?” Silver said.

It’s true that this ought to be a relatively low priority for labs that are busy with good research, but it’s depressing to see that 1) whether something is publishable in high impact journals is such an important criterion for what we do, 2) skeptical science that replicates and refutes is considered a waste of effort, and 3) students are discouraged from carrying out such work, because there is some strange bias that will hurt their chances of employment.

I’m not disagreeing with those arguments, but I’m suggesting that they are symptoms of something rotten in the world of science. Testing claims ought to be what we do. If the journals are going to fill up with positive claims thanks to the file-drawer effect, and if nobody ever wants to evaluate those claims, and if negative results are unpublishable, the literature is going to decline in utility for lack of rigor and evaluation.

Of course, there is one group that has real incentive to get in there and get their hands dirty refining the results: the Wolfe-Simon lab. But her response implies she’s not going to make the effort (although I hope she really is doing something). And this attitude above suggests that, while the positive claim received a lot of media hoopla, any discovery of alternative explanations is going to get ignored. Methinks I see a ratchet at work.

I also notice that Rosie Redfield, brilliant genius that she is, has a relatively simple test of the claims. It’s not my field and I’m not equipped to do any of it, but I don’t see why anyone would find it a waste of effort to assign that project to a first-year grad student, as an exercise in techniques and skill, and as a way to get a quick (I know, low impact!) publication.

And I’m still bewildered that the scientific community would consider tests of a hypothesis a poor investment of its resources. This isn’t like creationism; Wolfe-Simon has a very specific claim that can be evaluated with standard laboratory techniques.

Not everyone at Psychology Today is incompetent

That study claiming that black women are “objectively” unattractive seems to be finally getting its author, Satoshi Kanazawa, in big trouble. That would be entirely wrong if it were based on disliking his conclusions, but if it were based on a demonstration of Kanazawa’s incompetence, then it would be earned. And that seems to be what is happening. Interestingly, many really good criticisms of Kanazawa are coming from Psychology Today’s blogs.

Daniel Hawes critiques his use of factor analysis and the problem of factor indeterminacy. This is a discussion of the failures of Kanazawa’s methodology, but also points out that he’s been peddling pseudoscience week after week.

An anticipated critique to what I’m saying here is that people will argue that I’m uncomfortable with his argument because it is politically incorrect. My above explanation has no reference to political correctness. The source of my frustration with Kanazawa’s writing is his pseudoscience. Given Kanazawa’s history of unabashedly blogging about research that he very well knows to be faulty at best and outright wrong at worst, my criteria for pseudoscience I discussed above are met. Yet, there is a natural reason that I (and others) have decided to respond to Kanazawa most recent article, and not as extensively to previous ones, that clearly follow the same disturbing pattern. Every other week there is a ridiculous Fundamentalist post claiming to explain “Why Night Owls are more intelligent”, or asking “Are all Women essentially Prostitutes?”, or posing the conjecture that “If Obama is Christian, Michael Jackson is White.” It seems hardly worth the effort to each time try to debunk the absurdity underlying these sensationalist arguments. However, when this unreasonable behavior spills into discussions of socially contentious issues such as race, I believe that pseudoscience left uncommented is dangerous. In particular it can quickly provide a basis for “scientific racism”, and so I believe that it is dutiful behavior for scientists and writers – especially when sharing the same media platform – to take a stance when these kind of discussions surface.

Scott Barry Kaufman and Jelte Wicherts have done something even more interesting: they downloaded the Add Health dataset that Kanazawa used and analyzed it independently. This is very revealing.

Kanazawa mentions several times that his data on attractiveness are scored “objectively”. The ratings of attractiveness made by the interviewers show extremely large differences in terms of how attractive they found the interviewee. For instance the ratings collected from Waves 1 and 2 are correlated at only r = .300 (a correlation ranges from -1.0 to +1.00), suggesting that a meager 9% of the differences in second wave ratings of the same individual can be predicted on the basis of ratings made a year before. The ratings taken at Waves 3 and 4 correlated between raters even lower, at only .136– even though the interviewees had reached adulthood by then and so are not expected to change in physical development as strongly as the teenagers. Although these ratings were not taken at the same time, if ratings of attractiveness have less than 2% common variance, one is hard pressed to side with Kanazawa’s assertion that attractiveness can be rated objectively.

The “waves” refer to the fact that the data is grouped by age into several categories, and he makes another interesting observation: if you look at only the adult wave, which is the only appropriate one if you want to talk about differences in sexual attractiveness, there are no differences by race.

Focusing just on Wave 4, it is obvious that among the women in the sample, there is no difference between the ethnicities in terms of ratings of physical attractiveness. Differences in the distributions for females when tested with a regular (and slightly liberal) test of independence is non-significant and hence can be attributed to chance (Pearson’s Chi-Square=15.6, DF=12, p =.210).

Now there’s the kind of statistical rigor I’ve come to expect and respect from my psychology colleagues.

Dichloroacetate and cancer

So many people have sent me this sensationalistic article, “Scientists cure cancer, but no one takes notice“, that I guess I have to respond. I sure wish it were true, but you should be able to tell from how poorly it is written and the ridiculous inaccuracies (mitochondria are cells that fight cancers?) that you should be suspicious. The radical, exaggerated claims make the truth of the story highly unlikely.

Researchers at the University of Alberta, in Edmonton, Canada have cured cancer last week, yet there is a little ripple in the news or in TV. It is a simple technique using very basic drug. The method employs dichloroacetate, which is currently used to treat metabolic disorders. So, there is no concern of side effects or about their long term effects.

The simple summary is this: that claim is a lie. There have been no clinical trials of dichloroacetate (DCA) in cancer patients, so there is no basis for claiming they have a cure; some, but not all, cancers might respond in promising ways to the drug, while others are likely to be resistant (cancer is not one disease!); and there are potential neurotoxic side effects, especially when used in conjunction with other chemotherapies.

So we have one popular account that is badly written and makes exaggerated claims. There is also a university press release, the source for the sloppy popular account, that doesn’t contain the egregious stupidities but does tend to inflate basic research studies into an unwarranted clinical significance. And then, of course, there are the actual peer reviewed papers that describe the research and rationale, and also the reservations, on DCA. It’s like a game of telephone: you can actually trace the account from the sober science paper to the enthusiastic press release to the web account with its extravagant claims of a simple, cheap cure for cancer, and see how the story is gradually corrupted. It would be funny if the final result wasn’t going to dupe a lot of desperate people.

But there is a germ of truth to the story, in that DCA does have potential. Here’s how it works.

There are two major pathways that we use to extract energy from sugar. One is glycolysis, which extracts two ATP molecules from each molecule of sugar, and doesn’t require oxygen. Then there is glucose oxidation, which as you might guess from the name, does require oxygen, but which takes the byproducts of glycolysis and burns them completely to produce 36 ATP. So there’s the tradeoff: if your cells are oxygen-starved, or hypoxic, they can still get energy from sugar, but it’s relatively inefficient, but if they do have access to oxygen, they can extract much more. This is why you breathe, and why your heart beats, and why you have an elaborate circulatory system to deliver oxygenated blood to your tissues: without oxygen, you suffer a catastrophic hit to the efficiency of energy production.

i-31e5f6238b0b59ae56218f65888aad1f-gly-go.jpeg

Another feature of these two energy-producing pathways is that they are in different cellular compartments. Glycolysis takes place in the cytoplasm, while glucose oxidation occurs in the mitochondria. There is a gate-keeping enzyme, pyruvate dehydrogenase kinase (PDK), that regulates the flow of pyruvate, a product of the glycolysis pathway, into the mitochondria for oxidation. If PDK is active, it suppresses the transport of pyruvate into the mitochondria, and the cell is forced to rely on glycolysis, even if oxygen is available. If PDK is inactivated, pyruvate is shuttled into the mitochondria, even if oxygen is low.

This is where DCA comes in. DCA inhibits PDK, forcing cells to use the more efficient form of energy production. That sounds like a strange way to make a cancer cell uncomfortable, but the other factor here is that mitochondria are primary regulators of apoptosis, or cell suicide. They are loaded with sensors and enzymes that react to abnormalities in the cell (like being cancerous!) by activating a self-destruct mechanism. Shut down the mitochondra, you shut down the self-destruct mechanism that polices the cell. So the idea is a little indirect: by goosing the mitochondria, we also wake up the safety switch that, if all goes well, will cause the cell to spontaneously kill itself.

There are good reasons to think this might work. Many cancer cells arise in hypoxic environments; a poorly vascularized tumor, for instance, is going to be oxygen starved in the absence of blood flow, and the inhibition of mitochondria may be a factor in their survival. There is a well-known phenomenon called the Warburg effect, in which cancer cells will rely on glycolysis even when oxygen is available, suggesting that they have suppressed their mitochondria.

DCA also seems like a relatively safe drug. It’s been used for a long time in patients with metabolic disorders, or with metabolic side effects from other problems.

A large number of children and adults have been exposed to DCA over the past 40 years, including healthy volunteers and subjects with diverse disease states. Since its first description in 1969, DCA has been studied to alleviate the symptoms or the haemodynamic consequences of the lactic acidosis complicating severe malaria, sepsis, congestive heart failure, burns, cirrhosis, liver transplantation and congenital mitochondrial diseases. Single-arm and randomised trials of DCA used doses ranging from 12.5 to 100 mg kg-1 day-1 orally or intravenously). Although DCA was universally effective in lowering lactate levels, it did not alter the course of the primary disease (for example sepsis).

This is encouraging. It means there is a body of work already published on the effects of DCA, which should simplify the process of moving it into clinical trials. The authors, however, very clearly indicate that it won’t be a magic bullet affecting all cancers, but that some are likely candidates.

Dichloroacetate could be tested in a variety of cancer types. The realisation that (i) a diverse group of signalling pathways and oncogenes result in resistance to apoptosis and a glycolytic phenotype, (ii) the majority of carcinomas have hyperpolarised/ remodeled mitochondria, and (iii) most solid tumours have increased glucose uptake on PET imaging, suggest that DCA might be effective in a large number of diverse tumours. However, direct preclinical evidence of anticancer effects of DCA has been published only with non-small cell lung cancer, glioblastoma and breast, endometrial and prostate cancer. In addition, the lack of mitochondrial hyperpolarisation in certain types of cancer, including oat cell lung cancer, lymphomas, neuroblastomas and sarcomas, suggest that DCA might not be effective in such cases. Cancers with limited or no meaningful therapeutic options like recurrent glioblastoma or advanced lung cancer should be on top of the list of cancers to be studied.

Notice that the only work done so far is preclinical: that means it has been tested in mouse models, tissue culture, but hasn’t really been tried in cancer patients yet. The authors come right out and say that, express some possible reservations about its effectiveness, and suggest what needs to be done next.

No patient with cancer has received DCA within a clinical trial. It is unknown whether previously studied dose ranges will achieve cytotoxic intra-tumoral concentrations of DCA. In addition, the overall nutritional and metabolic profile of patients with advanced cancer differs from those in the published DCA studies. Furthermore, pre-exposure to neurotoxic chemotherapy may predispose to DCA neurotoxicity. Carefully performed phase I dose escalation and phase II trials with serial tissue biopsies are required to define the maximally tolerated, and biologically active dose. Clinical trials with DCA will need to carefully monitor neurotoxicity and establish clear dose-reduction strategies to manage toxicities. Furthermore, the pharmacokinetics in the cancer population will need to be defined.

Do not rush out and buy DCA and gurgle it down as a cancer preventative. We don’t know that it works — the safe concentrations for you may not be sufficient to kill any cancer cells, and the concentrations needed to kill cancer cells may be so high that it will do horrible, unpredicted, and dangerous things to you (some work with patients with congenital mitochondrial disorders also revealed some degree of peripheral neuropathy, for instance). This is why we have clinical trials: to work out safe and effective doses, look for dangerous interactions with other drugs — and if you have cancer, you’re already on a complicated cocktail of drugs — and detect unexpected side effects.

We should be urging further investigation of this promising drug with the beginning of clinical trials, but it’s far too early to be babbling about “cancer cures”. There have been lots of drugs that look great in the lab and have excellent rationales for why they should work, but the reality of cancer is that it is complicated and diverse and there are many more pitfalls between a drug that poisons cancer cells in a petri dish and a drug that actually works well in the more complex environment of a human being.

One other factor that inflames the conspiracy nuts over this drug is that DCA is simple, dirt-cheap, and completely unpatentable — there is no economic incentive for a pharmaceutical company to invest a gigantic bucket of money in clinical trials, because there is no hope for a return on the investment.

This is why an independent academic community with research funded for knowledge rather than profit is so important, and really emphasizes why we cannot afford to privatize all biomedical research. The authors propose a plan for progressing without the involvement of the pharmaceutical industry.

Funding for such trials would be a challenge for the academic community as DCA is a generic drug and early industry support might be limited. Fundraising from philanthropies might be possible to support early phase I – II or small phase III trials. However, if these trials suggest a favourable efficacy and toxicity, the public will be further motivated to directly fund these efforts and national cancer organisations like the NCI, might be inspired to directly contribute to the design and structure of larger trials. It is important to note that even if DCA does not prove to be the ‘dawn of a new era’, initiation and completion of clinical trials with a generic compound will be a task of tremendous symbolic and practical significance. At this point the ‘dogma’ that trials of systemic anticancer therapy cannot happen without industry support, suppresses the potential of many promising drugs that might not be financially attractive for pharmaceutical manufacturers. In that sense, the clinical evaluation of DCA, in addition to its scientific rationale, will be by itself another paradigm shift.

I can’t blame the industry for not following up on this: a clinical trial costs millions of dollars, and even if DCA pans out, there is no profit at all to be gained from it. For this research, we have to turn to public support (they have an interest in better cancer treatments!) and to scientists and doctors themselves, who of course have a great personal interest in seeing their patients get better.


Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99(7):989-94.

Squid in space, again

Since I previously expressed my disappointment in the “squid in space” experiment that will be going up on the space shuttle, I’ve received a rebuttal from the lead investigator of the project. Fair’s fair; here it is.

Dear Dr. Myers,

I am the lead investigator on the Squid in Space project and an Assistant Professor at the University of Florida. I have read your description of the project in your blog and I feel that it is incomplete and missing the major point of the experiment. As you can imagine one doesn’t like to have their work labeled as “Bad Science” so I wanted to take this opportunity to write to you to elaborate on the press release that I assume inspired you to write the blog.

First, as you correctly pointed out in the blog that the squid are a models for how bacteria interact with animal tissues. For over 20 years this symbiosis has provided important clues as to how bacteria “talk” and communicate with host animals cells.

Vibrio fischeri induces several developmental events in the juvenile squid including a modification of the host immune system, and induction of an apoptotic cell death event. Similar events also happen in humans in response to both mutualistic bacteria, so by understanding how these mechanisms work in a simple squid/vibrio association we can make inferences to the human body. So that is why we chose the squid as a model system for the space experiment.

Second, we know that in microgravity conditions an astronaut’s immune systems appear to be dysregulated. However, in the few studies that involved human astronauts the results have been variable. So again the squid model allows us to be a bit more invasive than we could with human studies.

Also some bacteria become more virulent in space. The work of Cheryl Nickerson from Tulane has shown several microbes including Salmonella become far more virulent after exposure to microgravity conditions. However nothing is know about how commensal/mutualistic bacteria respond to microgravity conditions at the cellular level. So this experiment allows us to see the impact the microgravity treated V. fischeri has on the immune response and development juvenile squid (no embryos are going into space that was an error by the student reporter who wrote the release; we are sending hatched juvenile animals).

As 90% of the cells in our bodies are bacterial, we wanted to assess whether microgravity influences the “healthy” bacteria in anyway. Are developmental time lines disrupted? Does the V. fischeri initiation the changes in the host immune system and normal development (e.g. cell death events)? Basically do “good” bacteria go “bad”? These could be important questions to address for long-duration space flight and reduce the potential risk that astronauts may have to face.

We are also learning more about the natural symbiosis by experimenting with these animals under natural and simulated microgravity. By removing gravity as a constant we are able to determine to see if gravity might be obscuring aspects of the association. For example we are learning that some signals that activate the immune system (e.g. the trafficking of macrophages) are actually uncoupled in microgravity telling us that the signals may not function as we previously thought. More work on what the second signal could be is underway using simulated microgravity.

I hope this explains in a bit more detail why we are looking at these animals and flying the “Squid in Space” experiment. I know the press release did not fully explain the rationale behind the student run experiments.

If you have any additional questions or concerns regarding the science and objectives I would be happy to provide more detail.

Sincerely,
Jamie S. Foster

The basics of building a kidney

I’m a major fan of kidneys — they’re fascinating organs for discussion of both development and evolution. Today I lectured about them in my human physiology course, but I could only briefly touch on their development, and instead had to talk on and on about countercurrent multipliers and juxtamedulary nephrons and transport membranes and all that functional physiology stuff. So I thought I’d get the evo-devo out of my system with a few words about them here.

Our kidneys go through an elaborate series of three major developmental stages — we essentially build three pairs of kidneys as embryos, and jettison two pairs as we go along. It actually looks like something out of Haeckel’s recapitulation theory, as we progressively assemble and then discard ‘primitive’ kidneys.

i-25e8f2118fd6db977a210ed3589bae77-pronephros.jpeg

The first stage is the formation of the pronephric kidney. In the embryo, the circulatory system forms glomeruli, or tangled capillary beds, adjacent to the membrane that surrounds the body cavity, or coelom. Filtered plasma oozes into the coelom, and the pronephric kidney has ciliated openings into the coelom called nephrostomes, and the fluid is drawn into the tubules, where membrane pumps recover nutrients and salts and return them to the circulatory system. Whatever is left behind — wastes and water — trickles into the pronephric duct, which terminates in the cloaca.

It’s a simple, low pressure system that is adequate for collecting waste products from the early embryo. It relies on an existing cavity for collecting filtered fluids, and you can tell that it doesn’t use a high-pressure filtration scheme since it can get by with simple ciliary beating to cause fluid flow. It’s a primitive system that is retained for functional reasons: metabolizing embryonic cells are producing chemical waste products, and some kind of waste disposal system is essential for even this early stage.

i-0798a355549a56e2b8fb7278e959571e-mesonephros.jpeg

The second stage is the mesonephric kidney. New tubules bud off the pronephric duct, but unlike the pronephric tubules, these are directly invested with capillary glomeruli and form spherical filtrate collectors called Bowman’s capsules. This is the big functional difference from the pronephros: filtered fluids are no longer collected indirectly from the coelom, but straight from the circulatory system. Some of the mesonephric tubules may retain a connection with the coelom, but this is no longer the sole way to collect filtrate.

The pronephros degenerates completely as the mesonephros takes over its job. As it withers away, the mesonephric tubules continue to use the pronephric duct, which gets renamed: it’s now called either the mesonephric duct, or if you prefer the old school names, the Wolffian duct. Even the mesonephros is doomed, though; it’s an intermediate stage that can cope with the light loads of waste produced by the embryo at this point, but an even more elaborate, more efficient kidney, the metanephros, is also beginning to grow, and it’s going to make the mesonephros superfluous.

i-305eeebfafe6babdc24ce5511510bfa0-metanephros.jpeg
<

The metanephric kidney, the third and final stage of development (the metanephric kidney is the familiar adult kidney we all possess), buds from the mesonephric duct and forms a unique structure with familiar elements. The new kidney makes branching ducts from a central collecting point, like a spray of flowers; these new ducts look just like mesonephric tubules, with a Bowman’s capsule on the outer, or cortical side of the kidney, and loops descending down into the medulla to generate a concentration gradient of salts used in generating hyperosmotic urine (which is what I talked about in class today, and won’t say anything further here). The subunits are similar to the mesonephric tubules, just arrayed in a different and specific organization for even more effective mechanisms for maintaining salt balance.

This metanephric stage is also complicated by the co-development of the reproductive system. The gonads are differentiating and forming alongside the degenerating mesonephric kidney. In addition, another duct, the Müllerian duct forms in parallel to the Wolffian duct, so now, briefly, we have two pairs of kidneys and two pairs of longitudinal ducts. This is going to be followed by consolidation and change, though, and it’s going to be a sex dependent pattern.

In females, the Wolffian duct is mostly going to degenerate and be lost, along with the mesonephros. The Müllerian duct is going to develop into the fallopian tubes, uterus, cervix, and upper vagina. The only part of the mesonephric duct retained will be the branch connecting the metanephros to the cloaca.

In males, the M&uum;llerian duct degenerates. Yes, it seems incredibly wasteful and pointless: we guys built this parallel duct as embryos, and then promptly threw it away, unused. Instead, the Wolffian/mesonephric duct is retained and becomes the ductus deferens, that useful tube for transporting sperm from the testis to the penis.

I think you can see what’s cool about the kidneys — they follow a sequential pattern of development that also happens to reflect the evolutionary history of kidneys. You might be tempted to speculate that it follows a Haeckelian model, where development necessarily follows an evolutionary trajectory because change can only come by addition of new features, but don’t be fooled. There are a couple of reasons why this peculiar pattern of retaining ancient kidney types is maintained.

One is existence of developmental linkages: disrupting any of these earlier kidneys leads to serious developmental anomalies in subsequent kidneys. Each kidney is built on the foundations of the previous one; mutations that would excise that old less efficient, less sophisticated form would also prevent the normal development of the metanephros. Even if they were totally non-functional, we would still need the patterning aspect of the primitive kidneys to be present.

The other reason is functional. The metanephric kidney is complex and intricate, and takes more time to develop — but cellular metabolism isn’t going to just stop everywhere else in the embryo and wait for the kidneys to be put in place. It’s like the situation when construction workers are building a house, and they still occasionally need to empty their bladders, even if the elaborate bathroom faced with Grecian marble and equipped with the latest German plumbing fixtures isn’t done yet … so a porta-potty is wheeled onto the site.

And that’s what I like about kidneys: all the funky relics of the construction process are still there, hanging out and seeming to contribute to an excessively complex tangle of complicated relationships.


Kalthoff K (2001) Analysis of biological development. McGraw-Hill, NY.