How octopus suckers work

i-ccbc028bf567ec6e49f3b515a2c4c149-old_pharyngula.gif

i-0adb98c2b6a1c5dd167c92a9eb18e662-octo_arms_sm.jpg

Whoa, it’s been a while since I’ve said anything about my infatuation with cephalopods (since, like, the last post…). Let’s correct that with a nifty paper I found on octopus suckers.

Here’s a typical view of a tangle of octopus arms, all covered with circular suckers. The octopus can cling to things, grasp prey and other objects with those nifty little discs, and just generally populate people’s nightmares with the idea of all those grappling, clutching, leech-like appendages.

[Read more…]

Beautiful birds?

Crap. Coturnix tagged me with this beautiful bird meme, and I am the wrong person to ask. I don’t get out much, preferring to sit in the lab or the library, so my favorite birds are all in pieces and dead. But OK, since he asked…

A complex regulatory network in a diploblast

i-ccbc028bf567ec6e49f3b515a2c4c149-old_pharyngula.gif

The Wnt genes produce signalling proteins that play important roles in early development, regulating cell proliferation, differentiation and migration. It’s hugely important, used in everything from early axis specification in the embryo to fine-tuning axon pathfinding in the nervous system. The way they work is that the Wnt proteins are secreted by cells, and they then bind to receptors on other cells (one receptor is named Frizzled, and others are LRP-5 and 6), which then, by a chain of cytoplasmic signalling events, removes β-catenin from a degradation pathway and promotes its import into the nucleus, where it can modify patterns of gene expression. This cascade can also interact with the cytoskeleton and trigger changes in cell migration and cell adhesion. The diagram below illustrates the molecular aspects of its function.

i-1abd00af43b0c6450d276e4bc7047d04-wnt_signaling_pathway.gif

[Read more…]

Hox genesis

i-ccbc028bf567ec6e49f3b515a2c4c149-old_pharyngula.gif

One of the hallmark characters of animals is the presence of a specific cluster of genes that are responsible for staking out the spatial domains of the body plan along the longitudinal axis. These are the Hox genes; they are recognizable by virtue of the presence of a 60 amino acid long DNA binding region called the homeodomain, by similarities in sequence, by their role as regulatory genes expressed early in development, by the restriction of their expression to bands of tissue, by their clustering in the genome to a single location, and by the remarkable collinearity of their organization on the chromosome to their pattern of expression: the order of the gene’s position in the cluster is related to their region of expression along the length of the animal. That order has been retained in most animals (there are interesting exceptions), and has been conserved for about a billion years.

Think about that. While gene sequences have steadily changed, while chromosomes have been fractured and fused repeatedly, while differences accumulated to create forms as different as people and fruit flies and squid and sea urchins, while continents have ping-ponged about the globe and meteors have smashed into the earth and glaciers have advanced and retreated, these properties of this set of genes have remained constant. They are fundamental and crucial to basic elements of our body plan, so basic that we take them completely for granted. They determine that we can have different regions of our bodies with different organs and organization. Where did they come from and what forces constrain them to maintain their specific organization on the chromosome? Are there other genes that are comparably central to our organization?

[Read more…]