No, not really — my title is a bit of a sensationalistic exploitation of the thesis of a paper by Peterson, Dietrich, and McPeek, but I can buy into their idea that microRNAs (miRNAs) may have contributed to the pattern of metazoan phylogenies we see now. It’s actually a thought-provoking concept, especially to someone who favors the evo-devo view of animal evolution. And actually, the question it answers is why we haven’t had thousands of Cambrian explosions.
In case you haven’t been keeping up, miRNAs are a hot topic in molecular genetics: they are short (21-23 nucleotides) pieces of single stranded RNA that are not translated into protein, but have their effect by binding to other strands of messenger RNA (mRNA) to which they complement, effectively down-regulating expression of that messenger. They play an important role in regulating the levels of expression of other genes.
One role for miRNAs seems to be to act as a kind of biological buffer, working to limit the range of effective message that can be operating in the cell at any one time. Some experiments that have knocked out specific miRNAs have had a very interesting effect: the range of expressed phenotypes for the targeted message gene increases. The presence or absence of miRNA doesn’t actually generate a novel phenotype, it simply fine-tunes what other genes do — and without miRNA, some genes become sloppy in their expression.
This talk of buffering expression immediately swivels a developmental biologist’s mind to another term: canalization. Canalization is a process that leads organisms to produce similar phenotypes despite variations in genotype or the environment (within limits, of course). Development is a fairly robust process that overcomes genetic variations and external events to yield a moderately consistent outcome — I can raise fish embryos at 20°C or at 30°C, and despite differences in the overall rate of growth, the resultant adult fish are indistinguishable. This is also true of populations in evolution: stasis is the norm, morphologies don’t swing too widely generation after generation, but still, we can get some rapid (geologically speaking) shifts, as if forms are switching between a couple of stable nodes of attraction.
Where the Cambrian comes into this is that it is the greatest example of a flowering of new forms, which then all began diverging down different evolutionary tracks. The curious thing isn’t their appearance — there is evidence of a diversity of forms before the Cambrian, bacteria had been flourishing for a few billion years, etc., and what happened 500 million years ago is that the forms became visible in the fossil record with the evolution of hard body parts — but that these phyla established body plans that they were then locked into, to varying degrees, right up to the modern day. What the authors are proposing is that miRNAs might be part of the explanation for why these lineages were subsequently channeled into discrete morphological pathways, each distinct from the other as chordates and arthropods and echinoderms and molluscs.