From now on, I’m going to send all those obnoxious Peterson cultists to Adam Rutherford

I hope he enjoys them, because I’m more than a little tired of those obtuse wankers. Rutherford is writing about what makes humans unique, and isn’t shy about pointing out that most of the pop sci claims are nonsense.

Because sex and gender politics are so prominent in our lives, some look to evolution for answers to hard questions about the dynamics between men and women, and the social structures that cause us so much ire. Evolutionary psychologists strain to explain our behaviour today by speculating that it relates to an adaptation to Pleistocene life. Frequently these claims are absurd, such as “women wear blusher on their cheeks because it attracts men by reminding them of ripe fruit”.

Purveyors of this kind of pseudoscience are plenty, and most prominent of the contemporary bunch is the clinical psychologist and guru Jordan Peterson, who in lectures asserts this “fact” about blusher and fruit with absolute certainty. Briefly, issues with that idea are pretty straightforward: most fruit is not red; most skin tones are not white; and crucially, the test for evolutionary success is increased reproductive success. Do we have the slightest blip of data that suggests that women who wear blusher have more children than those who don’t? No, we do not.

Peterson is also well known for using the existence of patriarchal dominance hierarchies in a non-specific lobster species as supporting evidence for the natural existence of male hierarchies in humans. Why out of all creation choose the lobster? Because it fits with Peterson’s preconceived political narrative. Unfortunately, it’s a crazily poor choice, and woefully researched. Peterson asserts that, as with humans, lobsters have nervous systems that “run on serotonin” – a phrase that carries virtually no scientific meaning – and that as a result “it’s inevitable that there will be continuity in the way that animals and human beings organise their structures”. Lobsters do have serotonin-based reward systems in their nervous systems that in some way correlate with social hierarchies: higher levels of serotonin relate to increased aggression in males, which is part of establishing mate choice when, as Peterson says, “the most desirable females line up and vie for your attention”.

I’m definitely buying his new book, The Book of Humans: 4 Billion Years, 20,000 Genes, and the New Story of How We Became Us when it becomes available in March. I’ve been praising his last book, A Brief History of Everyone Who Ever Lived: The Human Story Retold Through Our Genes, to everyone I know, and I just learned that it’s going to be used as a text in one of the anthropology electives offered at our school. He’s an author you must not miss if you’re interested in good explanations of evolution and genetics.

Day 4. Spiders grow up so fast!

Just another of my daily updates. They grow up so fast!

Not shown here is that I have 3 other sets of hatchlings that are eating fruit flies as fast as I can make them — I’m going to have to ramp up Drosophila production.

Especially since I have four other egg sacs incubating in the wings. These are fecund little critters.

Oh, hey, also: I’ve been noticing that YouTube demonetizes these spider videos very quickly. Does YouTube have arachnophobia, or am I doing something wrong? Not too worried about it — I don’t expect to make a fortune from home movies of spiders — but it’s just a curious thing.

[Read more…]

Friday Cephalopod: The Ecstasy Protocol

The story of this experiment where octopuses were given a hit of Ecstasy (MDMA) is all over the interwebs right now, but not very many people have bothered to read the original paper, given the weird twist it’s been given, that these bored scientists were giving their pets drugs to see what they’d do. That isn’t the case at all. The first part of the paper is all about sequence analysis of the serotonin transporter gene SLC6A4 (the gene that is affected by MDMA), and a comparison of the gene in different phyla. This research starts with some serious, detailed work on the functional mechanics of the gene. If you want to study the role of serotonin in mood and behavior in humans, comparative work of this sort is essential if you want to puzzle out which bits and pieces of the gene are important.

The starting point of this work is the phylogeny, which tells us that serotonin is an ancient transmitter, and that many of the elements of its signaling process are evolutionarily conserved. It should also tell you that its history is complicated, because there are a lot of duplications and subtle variants.

(A and B) Maximum-likelihood trees of SLC6A transporters (A) and SLC6A4 serotonin transporters (B) in select taxa. Species are mapped to tree and protein identifiers in Table S3. For a larger version of (A), see Figure S1.
(A) A maximum-likelihood “best tree” for the SLC6A gene family. The maximum-likelihood tree produced by RAxML includes 503 proteins and 21 species, with tree building based on a MAFFT alignment of full-length sequences.
(B) The SLC6A4 gene family, a subtree of the maximum-likelihood “best tree” in (A).

Thus, monoamine transporters may represent an ancient innovation that arose early in bilaterian evolution, with various ancient and more recent duplications in different lineages.

We know, though, from the molecular work that the octopus has an SLC6A4 gene, and further, that the portion of the gene that binds to MDMA has been conserved. The next question, then, is to ask how this gene modulates octopus behavior. That’s when the test of exposing them to MDMA was proposed.

Of course, you don’t just give animals the drug and watch to see what happens. You’ve got to have a hypothesis. In this case, prior observations, much of it informal, in a different model system, Homo sapiens, was used to infer that MDMA exposure might increase social behavior (“I love you, man”), so they designed an experimental setup to directly test that behavior. Here it is.

(A and B) Diagrams illustrating timeline (A) and experimental protocol (B) for three-chambered social approach assay.
(C) Quantification of time spent in each chamber during 30-min test sessions (n = 4; two-way repeated-measures ANOVA: p = 0.0157; post hoc unpaired t test pre, social versus center p = 0.4301, object versus center p = 0.0175; post, social versus center p = 0.0190, object versus center p = 0.1781).
(D–K) Comparisons between pre- versus post-MDMA-treatment conditions (paired t test pre versus post, social time p = 0.0274; object time p = 0.1139; center time p = 0.7658; transitions p = 0.3993).
(L) Photograph of social interaction under the saline (pre) condition.
(M) Photograph of social interaction under the MDMA (post) condition.
Error bars represent the SEM.

The design is straightforward: since you can’t ask an octopus to explain the sensations they feel under MDMA, you give them a choice. They have a 3-chambered box, and they put the octopus they were testing in the center box. On the left, there is an object, a toy they can explore. On the right, there is another octopus, an opportunity to socialize. Will they prefer an inanimate object they can tinker with, or to approach a conspecific?

In observations without any drugs, they determined that, as expected, octopuses are relatively solitary animals — in part because nobody likes the males. Both male and female subjects spent most of their time in the central chamber, but would spend more time in the social chamber if the octopus there was a female, but if it was male, they were suddenly much more interested in hanging out with the object.

Nevertheless, somewhat surprisingly, both male and female subjects did exhibit social approach to a novel female conspecific, a finding that may reflect an adaptation of laboratory raised animals or an incomplete ethological description of the full repertoire of social behaviors in the wild. Although we cannot rule out the possibility that the female versus male social object preference effect is governed by relative size differences between subject and social objects, we think this is unlikely since we observed aversion to a male social object both when the subject was greater and smaller in size.

I’m just going to assume that the male aversion was because males are assholes, which is apparently a phylogenetically ancient trait.

What they clearly saw, though, was that under the influence of MDMA, the subject octopus switched to expressing a far greater interest in exploring the social object, whether it was a male or female. The animals responded to the entactogenic properties of the drug, an interesting observation that suggests that this is also a phylogenetically ancient trait.

A word of caution, in interpreting these data: there has been a tendency lately to cherry-pick examples of complex animal behavior to justify specific human social structures. What this work tells us is that there are conserved biochemical pathways that are regulated to trigger behaviors along a continuum — that diverse animals use serotinergic pathways as a kind of slider control, that can be ramped up to increase cooperative, social behavior, or tuned down to increase aggressive, asocial behavior. That this kind of neural regulative control exists, is conserved, and has deep roots in animal evolution cannot be used to argue that humans are naturally supposed to build capitalist dominance hierarchies any more than it can be used to claim that humans are adapted to live in cooperative communes full of peace, love, and understanding. The pathway is present in animals with diverse behavioral patterns.

Monoamine transporters, including human SERT, DAT, and NET, appear to be a bilaterian innovation, suggesting a possible ancient evolutionary role in nervous system centralization and elaboration, both hallmarks of the Bilateria, and the families have undergone complex patterns of gene duplication and loss throughout the clade over time. Phylogenetic analysis revealed clear orthologs of human SLC6A4 in octopuses, as well as high levels of conservation in the transmembrane domain and amino acid region critical to MDMA binding. Interestingly, we found that SLC6A4 is broadly conserved in the fruit fly, the worm, and most other bilaterian animals but is surprisingly absent in both of the eusocial hymenopteran insects, the honeybee and leaf cutter ant.

I’m sure that warning won’t stop everyone, though. I also expect that there will be some humans using it to argue that we all ought to be taking more E, a position that the research does not endorse at all, either.


One last thing I want to mention is a bit from the methods section (yeah, I read the methods): cephalopods are completely exempt from the ethical regulations for the care of laboratory animals, but the investigators followed them anyway.

Care of invertebrates, like O. bimaculoides, does not fall under United States Animal Welfare Act regulation, and is omitted from the PHS-NIH “Guide for the Care and Use of Laboratory Animals.” Thus, an Institutional Animal Care and Use Committee, a Committee on Ethics for Animal Experiments, or other granting authority does not formally review and approve experimental procedures on and care of invertebrate species, like O. bimaculoides, at the Marine Biological Laboratory. However, in accordance with Marine Biological Laboratory Institutional Animal Care and Use Committee guidelines for invertebrates, our care and use of O. bimaculoides at the Marine Biological Laboratory and at Johns Hopkins University generally followed tenets prescribed by the Animal Welfare Act, including the three ‘Rs’ (refining, replacing, and reducing unnecessary animal research).

You can’t punch a kitten with a meat hammer, but you can do it to an octopus, if you want, which seems backwards to me. No! I mean, you shouldn’t be allowed to punch any animal with a meat hammer in the name of science. But once again, our laws are inconsistent and arbitrary.

The Brian Wansink saga comes to a close

First, the good news:an investigation into Brian Wansink’s research practices “found no fraud, no theft, no plagiarism, and no sexual misconduct or Title IX issues.” We ought to recognize the reality of that, that most men have no incident in their past of wrestling unwilling women down and trying to rape them, so we should notice that, especially when some men are trying to pretend that attempted rape and sexual assault are just a phase that all boys go through. By all accounts I’ve seen, Wansink seems to be good, collegial, helpful person, and not a US senator.

But now the bad news: he’s not a very good scientist.

Cornell University has been investigating his research since November. In a statement, the university told BuzzFeed News that Wansink was found to have “committed academic misconduct in his research and scholarship, including misreporting of research data, problematic statistical techniques, failure to properly document and preserve research results, and inappropriate authorship.”

The news came a day after six of Wansink’s papers were retracted, giving him a total of 13 retractions.

Now it’s all over. Wansink has announced his retirement. Just as well, since his idea of research was to take ideas about diet that people wanted to be true, do lots of experiments and observations, and then when they turned out not to be true, finagle the statistics until he got the results everyone wanted to hear.

Under his leadership, the Food and Brand Lab produced studies that reinforced a theme: Simple environmental cues can help people lose weight and eat healthier, without the need for rigorous dieting and intense exercise. It was a theme that earned him coverage everywhere from Good Morning America to O, the Oprah Magazine, to the New York Times. He once led the USDA committee on dietary guidelines. He oversees a $22 million federally funded program to promote “smarter lunchrooms” in nearly 30,000 schools.

But for years, the Food and Brand Lab massaged shoddy data into published, peer-reviewed studies in a brazen ploy for media coverage, as BuzzFeed News has reported.

I guess winning the approval of Oprah and not trying to rape anyone isn’t the same as doing good science.

SPIDER MADNESS!

I must update my diary. Change is happening fast, and I begin to fear that my experiment, my delving into esoteric, alien knowledge, could outstrip my feeble efforts at control. Let this be a record to explain my fate.

Prelude: I opened the mysterious sac, and to my delight, discovered beautiful jewels: like opalescent pearls, they rested quietly in a great mass, promising fortune for the future.

Day Zero: I kept the pearly orbs in a glass chamber, where I could observe them whenever I desired. I often desired. My eyes were drawn to their simple elegance, time after time. My obsession, I realize now, was a portent of danger.

Day One: O Glorious Day! The orbs dissolved away to reveal candy-like, plump babies, pale and soft, capable of only feeble stirrings of their pallid limbs. Such innocence warmed my heart.

Day Two: Their limbs have lengthened. They walk about clumsily, but still somewhat endearingly, peering about with their eight eyes. I try not to notice that a few of their siblings seem to be motionless, empty husks, drained of all life and flesh, but perhaps they are just molted exoskeletons? One can hope. I feel a vague disquiet, so as a precaution, I scatter a few flies in the dish.

Day Three: I peek into their chamber. All is quiet. The flies all lie dead and crumpled, sucked dry, but of the Children of the Orbs, almost nothing. The dish is quiet and empty. I examine the egg sac, and find it also nearly empty, with only a few scouts meandering about, and a tiny few babies just stirring at the bottom. Where have they all gone?

Then I notice a thin strand of webbing from the egg sac, stretching upward and to the side. I follow it, and there, massing on the lip of the chamber, is a great army of spiders, clustering together and building a citadel of cobwebs. They are working together. They are cooperating. What are they planning? Escape? Rushing their captor? Constructing an altar for the dark ritual that will summon Atlach-Nacha, the spider god, and begin their reign? I do not know.

[Read more…]

Mystical Experiences @ Death!

That was the title of the lecture I attended last night, by our distinguished visiting professor, Allen Kellehear of the University of Bradford. It was … frustrating. Kellehear does have an excellent background in caring for the dying, and I would have enjoyed (if that’s the word) a discussion of the material and emotional needs of the dying, or hospice policy, or something along those lines, but instead it was an hour of Near Death Experiences (NDEs). I also agreed with his conclusion, that these phenomena are a complex outcome of cultural expectations, and that we actually don’t know much about the biology. It’s just that the journey there was a catalog of unlikely interpretations of mundane events.

He began with the facts and figures, and told us that, for example, 20% of resuscitated individuals report having an NDE, and 30% of people report having a visitation from the dead. My question is: how are these numbers at all meaningful? There is a huge amount of selection bias here (which he admitted to), because my story of losing consciousness and later waking up is not going to draw any attention at all, while Eben Alexander’s fabulous story of going to heaven and meeting an all-powerful, awesome lord of creation gets on the New York Times bestseller list. It’s nice to have statistics, but I want to know how they were collected and interpreted, and without that, they’re meaningless.

I was also confused because later he mentions that these NDE-like experiences were also expressed by people in many stressful situations, like trapped miners. So once again, 20% of what? Shouldn’t the fact that I lost consciousness when I went to bed last night, as I’ve done every night for 6 decades, and did not have an other-worldly, out-of-body experience be counted among the negatives?

He also gave us a list of the canonical events during an NDE: the dark tunnel, the Being of Light, the visiting of dead relatives, etc. I felt like pointing out that he, an authority on this subject, has just now primed a large audience on exactly what they’re supposed to experience if they had an NDE. Not that that’s his fault: there are movies and books and stories told on daytime television that reinforce these perceptions, and there’s a widespread cultural idea about them that we’re already soaking in.

I also wondered…if I were in a coma, and woke up and reported that my consciousness spent that time wandering in a cosmic darkness, or that I remembered visiting the shores of an alien sea and meeting Space Squid, would that even count as an NDE? He’s got a checklist, you know, and if I were asked if I saw the Being of Light, and I said “No,” would that mean I didn’t have an NDE?

Most annoying of all, though, was all the neuroscience bashing. He really is not impressed with the neuroscientific explanations of the phenomenon, and neither am I, because he gave us a long list of scientific explanations that did not include the dominant hypothesis. He talked about scientists sticking electrodes on the heads of unconscious patients to record EEGs during their NDE, or drawing blood to measure blood gases, and hypotheses about anoxia, or endorphins, or ocular pressure increases, or similar attempts to explain NDEs as events that occurred during the trauma or the coma, and the one time he named one of these neuroscientists, it was Michael Persinger. We’re talking fringe of the fringe. The neuroscientists I know would just roll their eyes at these accounts, in the same way we’d dismiss those weird experiments with putting dying people on precision balances to measure the weight of the soul at the moment it left the body. It’s missing the whole point.

But he didn’t even mention how most neuroscientists would explain NDEs. They don’t occur during the event, because the brain is not functioning at all well during that time. They are confabulations assembled by the brain once its function is restored.

Minds abhor gaps. Our consciousness works hard to maintain the illusion of continuity, and we even invent stories to explain where our consciousness “went” during its absence. We do this all the time without even thinking about it.

A mundane example: have you ever lost your keys, or your glasses? It happens all the time. We’re often not thinking about routine events, and we don’t bother to store them in our memories, so I get up in the morning, stumble about in a fog while doing the things I do almost every day, and I don’t have to pay conscious attention to them. But maybe later I wonder where I put my glasses, and my wife tells me, “They’re here on the kitchen counter,” and my brain instantly generates a plausible explanation. “I must have put them there when I was making the coffee,” I think. If I were asked at that moment, I would even put together a fairly detailed narrative about walking into the kitchen and taking them off as I was filling the pot with water — but the thing is, I didn’t know this. I don’t actually remember it. If I had, I wouldn’t have been wondering where I’d put them.

We do this constantly. Memories aren’t detailed recordings of everything you’ve done or experienced, they’re a scattered set of anchoring specifics with a vast amount of narrative filler generated as necessary by your brain, based upon a plausible model of how the world works. So I don’t remember taking my glasses off, but I do have a model of the world that includes me taking them off while doing kitchen tasks, so voila, a story is easily assembled. If I had a world model that included elves, I might have built a story that said, “Those pesky elves must have put them there!”, and then the fun begins, because the observation that my glasses were where I hadn’t remembered putting them becomes confirmation of my model of the world that includes elves.

We really don’t like the idea that our consciousness isn’t always present in our heads, that it’s an epiphenomenon of constant invention, so we have explanations for where it goes when it isn’t particularly active. I intentionally put my glasses on the counter, I just forgot. Most interestingly, we go through a period of unconsciousness every day, and we don’t freak out about where our minds went. We were “sleeping”, we say, our minds were still there, busily doing nothing, and this word “sleep” consoles us that our consciousness did not stop existing for hours and hours.

Similarly, NDEs are a conscious narrative we build to explain what happened to ourselves during radical, traumatic events. We blanked out, our minds stopped humming along, where did our self go? It had to have gone somewhere, it can’t just stop, so our brains build a story from conventional expectations to prevent an existential crisis. It’s what we do. And if it’s near-death, how convenient that we throw in Dead Uncle Bob, who we know is dead, but we have these niggling questions about where Uncle Bob went, so clearly we must have both gone to the same place. The idea that a consciousness ceased to exist is inconceivable, after all.

If Kellehear had actually discussed what neuroscientists believe, it would have been something along those lines, on the ephemeral and contingent nature of consciousness, and he wouldn’t have brought up silly ol’ crackpot Persinger as representative. It would have also revealed that neuroscientists are actually in alignment with his ideas about the importance of history and culture and religion and emotion in shaping human responses to death, that it’s not really a hard-wired part of our neural circuitry. So that was a little unsatisfying.

There was also a bit near the end where he got into a bit of Dawkins bashing — but for all the wrong reasons. He railed against the arrogance of a scientist claiming to know that there is no god. I felt like saying that that arrogance pales in comparison with the ubiquitous, overbearing hubris of claiming to not only know that there is a god, but that one knows exactly what kinds of sexual behaviors that god enjoys, and that one has this certainty in spite of the fact that there is no independent evidence of any kind that this supreme being even exists. But I was being nice. It was also an event packed full of community members — “townies” — who were there to listen to an academic reinforce their model of the world, and they weren’t going to appreciate someone telling them that elves aren’t real.