The Volvox 2017 website is live

volvoxwebheader_3_orig

The website for the Volvox 2017 conference is up at www.volvox2017.org. Registration isn’t open yet, but there’s some information about the venue, the Donald Danforth Plant Science Center in St. Louis. The meeting is set for August 16-19, 2017.

The goal of the International Volvox Conference is to bring together international scientists working with Volvox and its relatives (aka Volvocales or volvocine algae). We cordially invite experimentalists and theorists interested in these fascinating organisms.

I’ll keep you posted!

Evolution of microRNAs in the volvocine algae

The following guest post was kindly provided by Dr. Kimberly Chen. I have edited only for formatting.

MicroRNAs (miRNAs) are a class of non-coding small RNAs that regulate numerous developmental processes in plants and animals and are generally associated with the evolution of multicellularity and cellular differentiation. They are processed from long hairpin precursors to mature forms and subsequently loaded into a multi-protein complex, of which the Argonaute (AGO) family protein is the core component. The small RNAs then guide the protein complex to recognize complementary mRNA transcripts and conduct post-transcriptional gene silencing.

[Read more…]

It’s not evolution, just adaptation

…”evolve” is not the correct term. The microbes adapted. – Cornelius Hunter

We heard several accusations during the recent Presidential campaign that one or the other candidate, or an interviewer, had taken a quote out of context. Of course, every quote is taken out of context. That’s what a quote is; otherwise it’s just the whole speech, or interview, or whatever. The important question is whether or not it’s taken out of context in a way that changes its meaning.

One thing I don’t do, and never have done, on this blog is intentionally misrepresent other people’s positions.  The quote above, from a recent post by Cornelius Hunter on Evolution News and Views, means just what it says. He really is arguing that microbial adaptation observed in Lenski-style experiments is not evolution.

[Read more…]

Retrogenes in Volvox and Chlamy

The evolution of multicellularity in the volvocine algae appears to have happened primarily through co-option of existing genes for new functions. For example, the initial transition from a unicellular life cycle to a simple multicellular one involved the retinoblastoma gene, as Hanschen and colleagues elegantly demonstrated (see “The evolution of undifferentiated multicellularity: the Gonium genome“). A Volvox gene involved in cellular differentiation, regA, was likely co-opted from an ancestral role in environmental sensing, and a similar origin appears to explain the use of cyclic AMP for the signaling that causes multicellular aggregation in cellular slime molds (see “Volvox 2015: evolution“). 

Some of the changes leading to complex multicellularity, though, clearly did involve new genes. Two gene families involved in building the extracellular matrix that makes up most of a Volvox colony, the pherophorins and metalloproteinases, have undergone multiple duplication events leading to greatly expanded gene families (see “Heads I win; tails you lose: Evolution News & Views on Gonium, part 2“). One mechanism by which genes are duplicated is retroposition, in which a messenger RNA is reverse transcribed into DNA and inserted into the genome:

Fig S1A from Jakalski et al. 2016. Basic mechanism of retroposition. DNA is transcribed into a pre-mRNA by RNA polymerase, introns are spliced out, and a poly(A) tail is added to the 3′ end, resulting in a mature messenger RNA. The mRNA is then reverse-transcribed to DNA and inserted into a new genomic location.

[Read more…]

The long-term evolution experiment

I’m attending the 2nd ASM Conference on Experimental Microbial Evolution (#ASMEME) in Washington, DC. The meeting opened last night with a keynote address by Rich Lenski on the long-term evolution experiment (LTEE). If you’re not familiar with it, the LTEE involves twelve populations of E. coli bacteria that have been transferred every damn day for the last 28 years. That’s right, twelve transfers every day since Ronald Reagan was President.

Since E. coli undergoes about 6.6 doublings per day under the experimental conditions, that means that the bacteria in this experiment have been evolving for over 65,000 generations. In that time, it has produced a wealth of information about evolutionary processes and spun out countless related experiments. The LTEE is so iconic that you usually don’t have to explain, at least to evolutionary biologists, which long-term evolution experiment you’re talking about. It has also played a role in some controversies, not least the “Lenski affair.”

[Read more…]

Graduate student position in the Nedelcu lab

If you’re a fan of Volvox and the volvocine algae and have recently received an undergraduate degree in biology or a related field, now’s your chance to get serious about studying them. Aurora Nedelcu is looking for a graduate student to join her lab at the University of New Brunswick. Professor Nedelcu is a major player in the Volvox community, having published foundational papers on diverse aspects of volvocine biology and organized the first two international Volvox meetings. This is a great opportunity to join a vibrant and growing research community:

A graduate student position is available in the laboratory of Aurora Nedelcu, in the Department of Biology at the University of New Brunswick, Fredericton, CANADA. Research in our laboratory is directed towards understanding general, fundamental issues in evolution – such as the evolution of multicellularity, development, cell differentiation, sex, programmed cell death, altruism.  Our research is rooted in the framework of transitions in individuality and evolution of complexity (at a conceptual level), and of cellular responses to stress (at a more mechanistic level).  The experimental model-system we are currently using is the green algal group, Volvocales (see our Volvocales Information Project; http://www.unbf.ca/vip). Highly motivated students with interests in either theoretical/genomics or experimental/molecular approaches, and previous research experience are encouraged to apply. Interested applicants should e-mail a CV, summary of research experience and interests, unofficial transcripts, and contact information for three referees to [email protected].

Applicants should meet the minimum requirements for acceptance in the Biology Department Graduate Program (see http://www2.unb.ca/biology/Degree_Info/Graduate.html).

The evolution of undifferentiated multicellularity: the Gonium genome

Blogging took a backseat to the wedding of two dear friends two weekends ago and to morel hunting last weekend, so I’m only now getting around to a post that should have been written weeks ago (I promised on April 22 that it would be out the following week). Last month, Erik Hanschen and colleagues published the Gonium pectorale genome, filling in some crucial bits of the transition to multicellular life in the volvocine algae. This was a big project, taking several years and involving over 20 authors from over a dozen institutions. The final paper is open access in Nature Communications.

I did post an effort to explain some aspects of the paper to the cdesign proponentsists at Evolution News and Views, who, by their own admission, failed to understand it (“After reading this paper, we’re none the wiser.”). I also complained of the science media’s tendency to refer to all algae as ‘pond scum.’ The lead author of the genome paper kindly followed up with a guest post addressing some of ENV‘s other misunderstandings, such as the purpose of model organisms in biology and the difference between ‘assertion’ and ‘evidence’. But now it’s time to dig into what the genome paper actually says.

[Read more…]

GMO and DNA

Figure 4 A & B from McFadden & Lusk 2016. Views about mandatory labeling.

Figure 4 A & B from McFadden & Lusk 2016. Views about mandatory labeling.

A recent paper in The FASEB Journal by Brandon R. McFadden and Jayson L. Lusk examines views on mandatory labeling of genetically modified (GM) foods (that’s the best link I could find; it’s not the final, formatted version, and it may differ in content as well). What a shitshow:

[Read more…]

Please stop calling them pond scum

Gonium pectorale. Credit: Kansas State University.

Gonium pectorale. Credit: Kansas State University.

Yes, they live in ponds; no they don’t form any kind of scum. The press release from Kansas State on the Gonium genome paper, which is reprinted here, here, and here, is titled “Pond scum and the gene pool: One critical gene in green algae responsible for multicellular evolution, understanding of cancer origin.” Gonium forms planktonic colonies of (usually) 8, 16, or 32 cells that swim under their own power and exhibit phototaxis (they’ll swim toward a light source). They are not pond scum. ‘Algae’ and ‘pond scum’ are not synonyms, dig? Leaving aside the distinction between algae and cyanobacteria, calling Gonium pond scum is like saying pineapples are lemons (because both are fruits).

Also…cancer origin, really? You went there? The word ‘cancer’ does not appear in the paper except in the funding acknowledgements (Bradley Olson is partly funded by the KSU Johnson Cancer Center).