The German Tank Problem supposes that there are N tanks with ID numbers from 1 to N. We don’t know what N is, but have looked at a single tank’s ID number, which we’ll denote m. How would you estimate N?
This is a well-known problem in statistics, and you’re welcome to go over to Wikipedia and decide that Wikipedia is a better resource than I am and, you know, fair. But, the particular angle I would like to take, is using this problem to understand the difference between Bayesian and frequentist approaches to statistics.
I’m aware of the popular framing of Bayesian and frequentist approaches as being in an adversarial relationship. I’ve heard some people say they believe that one approach is the correct one and the other doesn’t make any sense. I’m not going to go there. My stance is that even if you’re on Team Bayes or whatever, it’s probably good to understand both approaches at least on a technical level, and that’s what I seek to explain.
