Heads I win; tails you lose: Evolution News & Views on Gonium, part 2: Model systems and gene duplication

Figure 2 from Hanschen et al. 2016. (a) Predicted number of genes in each phylostratum (PS1–PS9) for Chlamydomonas, Gonium and Volvox. (b) Heatmap of transcription factor abundance for all green algae. Significant over- (+) and under-representation (−) in colonial/multicellular lineages (Gonium and Volvox) is denoted (G test of independence, α=0.05). Rows are clustered (left), an accepted phylogeny is depicted (top). (c) Phylogenetic analysis of gene family evolution. Bars to the left and right of the vertical axis denote the lost and gained gene families respectively, relative to its parental node. (d) Venn diagram of the species distribution of Pfam A domains unique to the volvocine algae.

Figure 2 from Hanschen et al. 2016. (a) Predicted number of genes in each phylostratum (PS1–PS9) for Chlamydomonas, Gonium and Volvox. (b) Heatmap of transcription factor abundance for all green algae. Significant over- (+) and under-representation (−) in colonial/multicellular lineages (Gonium and Volvox) is denoted (G test of independence, α=0.05). Rows are clustered (left), an accepted phylogeny is depicted (top). (c) Phylogenetic analysis of gene family evolution. Bars to the left and right of the vertical axis denote the lost and gained gene families respectively, relative to its parental node. (d) Venn diagram of the species distribution of Pfam A domains unique to the volvocine algae.

Erik Hanschen, the lead author on the Gonium genome paper, is also an old friend of mine from when we were both in Michael Doebeli’s lab at the University of British Columbia. He kindly agreed to write a guest post responding to Evolution News and Views‘ misunderstandings of his paper. Everything below the fold was written by Erik:

[Read more…]

Heads I win; tails you lose: Evolution News & Views on Gonium, part 1

Figure 6 from Hanschen et al. 2016. Multicellularity hinges on the evolution of cell cycle regulation in a multicellular context with subsequent evolution of cellular differentiation (here, cell size-based) and increased body size.

Figure 6 from Hanschen et al. 2016. Multicellularity hinges on the evolution of cell cycle regulation in a multicellular context with subsequent evolution of cellular differentiation (here, cell size-based) and increased body size.

Remember how I said they’re prolific? Before I’ve even had a chance to write up my thoughts on the Gonium genome paperEvolution News & Views has already published theirs. The story has also been picked up by the Washington PostNew HistorianGenNews, and ScienceDaily (that last one looks like just a reprint of the press release from University of the Witwatersrand). By the way, the genome paper is open access, so you don’t need a subscription to see it for yourself.

We already know that cdesign proponentsists are not fans of research into the evolution of multicellularity, and that they have trouble understanding it. In an unsigned article on the Gonium genome at ENV, they admit that

After reading this paper, we’re none the wiser.

That’s too bad. I’m here to help.

[Read more…]

Gonium genome published

Figure 1 from Hanschen et al. 2016. (a) Evolution of cell cycle control (C), expanded ECM (E) and somatic cells (S) are denoted. (b) Micrographs of Chlamydomonas (green; scale bar, 10 μm), Gonium (blue; scale bar, 10 μm) and Volvox (black; scale bar, 25 μm) show morphological differences.

Figure 1 from Hanschen et al. 2016. (a) Evolution of cell cycle control (C), expanded ECM (E) and somatic cells (S) are denoted. (b) Micrographs of Chlamydomonas (green; scale bar, 10 μm), Gonium (blue; scale bar, 10 μm) and Volvox (black; scale bar, 25 μm) show morphological differences.

I haven’t read it yet and won’t have time today, but the Gonium pectorale genome paper just came out in Nature Communications! Erik Hanschen is the lead author, and the article is open access. I previously reported on Erik’s talk at Volvox 2015:

[Read more…]

Pleodorina starrii

32- and 64-celled colonies of Pleodorina starrii.

32- and 64-celled colonies of Pleodorina starrii. Not to scale. Creative Commons License
Pleodorina starrii by Matthew Herron is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

I spent a year in graduate school trying to cross male and female strains of the volvocine green alga Pleodorina californicaA year. I did some other stuff in that time, but I spent an awful lot of it trying to convince these algae to get busy. I threw everything I could think of at them: four different mating media, different temperatures, different lighting conditions…nothing worked. I never recovered a single viable zygote. I needed to cross them to generate some genetic variation for an ambitious artificial selection study, my ‘official’ dissertation project. Eventually, my advisor suggested I ask Hisayoshi Nozaki for advice.

There is little doubt that Dr. Nozaki is the world’s leading expert on volvocine biodiversity, having described about half of the known species (see for example New Volvox SpeciesVolvox ovalis, and African Volvox in Montana). He responded that the strains of Pleodorina californica I had been failing to breed had been collected many years ago and had probably lost the ability to reproduce sexually (a problem I mentioned in Why don’t we revise volvocine taxonomy?). I had been spinning my wheels, never realizing that I had no hope of success. I should have contacted Dr. Nozaki about eleven months earlier.

[Read more…]

Origins of the sexes: Takashi Hamaji on mating type determination

The evolution of sex is one of the big outstanding problems in evolutionary biology. The origin of sex is one of Maynard Smith and Szathmáry’s “Major Transitions,” on which I’m currently teaching a course here at the University of Montana. Our discussion of sex luckily coincided with the visit of the grad-invited Distinguished Speaker, Sally Otto, an important theorist on this topic (among others). Dr. Otto generously agreed to join us for the discussion, which turned out to be one of the best we’ve had.

A related problem to the origin of sex is the origin of males and females. Sexual reproduction doesn’t always involve males and females: lots of species that don’t even have males and females have sex. There are lots of traits that we associate with males and females — fancy plumage, differences in body size and type of genitalia, presence and absence of exaggerated weapons — but what actually defines males and females is differences in gamete size. Animals, plants, and other organisms with males and females are oogamous: males have small, swimming sperm, and females have large, immotile eggs. But lots of single-celled eukaryotes have only one size of gamete. We call these isogamous (‘equal gametes’).

Some volvocine algae are isogamous (such as Chlamydomonas), some are oogamous (such as Volvox), and some (such as Pleodorina) are anisogamous (‘unequal gametes’), meaning that the gametes come in two sizes but both can swim. In spite of not having sexes per seChlamydomonas, like a lot of isogamous organisms, comes in two ‘mating types’, which are arbitrarily called ‘plus’ and ‘minus.’ The mating types are self-incompatible, in other words plus can only mate with minus and vice versa.

All this variation in mating systems makes the volvocine algae a great model system for understanding the evolution of sex and the sexes (see ‘Volvox 2015: all about sex‘). We know from previous work that males evolved from the minus mating type and females from the plus in this lineage. But males and females have evolved from isogamous ancestors many times, and to my knowledge we don’t know which came from which for any other group.

Takashi Hamaji and colleagues have just published an analysis of the genomic region that determines mating type in Gonium pectorale, an isogamous alga more closely related to Volvox than to Chlamydomonas.

Figure 1 from Hamaji et al 2016. A schematic diagram for phylogenetic relationships of selected volvocine species based on Nozaki et al. (2000); Herron and Michod (2008). The top row illustrates gamete type and structure. Tubular mating structures in isogamous gametes are indicated with red bars at the flagellar base. The possession of a MID gene is shown next to the minus mating type or male gametes. The lower row of cartoons depicts vegetative morphology (not to scale) for the indicated species.

Figure 1 from Hamaji et al 2016. A schematic diagram for phylogenetic relationships of selected volvocine species based on Nozaki et al. (2000); Herron and Michod (2008). The top row illustrates gamete type and structure. Tubular mating structures in isogamous gametes are indicated with red bars at the flagellar base. The possession of a MID gene is shown next to the minus mating type or male gametes. The lower row of cartoons depicts vegetative morphology (not to scale) for the indicated species.

[Read more…]

Chlamy 2016 registration open

Screenshot 2016-03-17 07.18.34

Registration and abstract submission for the 17th International Conference on the Cell and Molecular Biology of Chlamydomonas (Chlamy 2016) are now open. The deadline for abstract submission is April 11th. The meeting will be at the Kyoto International Conference Center June 26-July 1. This year’s program includes a session on “Evolution, Chlamydomonadales / Volvocales.”

Volvox 2015 meeting review available online

Fig. 1 from Herron 2016. Examples of volvocine species. A: Chlamydomonas reinhardtii, B: Gonium pectorale, C: Astrephomene gubernaculiferum, D: Pandorina morum, E: Volvulina compacta, F: Platydorina caudata, G: Yamagishiella unicocca, H: Colemanosphaera charkowiensis, I: Eudorina elegans, J: Pleodorina starrii, K: Volvox barberi, L: Volvox ovalis, M: Volvox gigas, N: Volvox aureus, O: Volvox carteri.

Fig. 1 from Herron 2016. Examples of volvocine species. A: Chlamydomonas reinhardtii, B: Gonium pectorale, C: Astrephomene gubernaculiferum, D: Pandorina morum, E: Volvulina compacta, F: Platydorina caudata, G: Yamagishiella unicocca, H: Colemanosphaera charkowiensis, I: Eudorina elegans, J: Pleodorina starrii, K: Volvox barberi, L: Volvox ovalis, M: Volvox gigas, N: Volvox aureus, O: Volvox carteri. A and B by Deborah Shelton.

The meeting review for the Third International Volvox Conference is now available online at Molecular Ecology (doi: 10.1111/mec.13551). The editors warned me ahead of time that the challenge for this paper would be to make it of broad interest to the readership of Molecular Ecology, so there is a lot of background information that will be old news to members of the Volvox community.

[Read more…]

Why don’t we revise volvocine taxonomy?

Volvocine taxonomy is in a sorry state. Most nominal genera, and some nominal species, are almost certainly polyphyletic. More than once, I’ve been asked during a talk, “Why is Volvox scattered all over the tree?”

JPhycol2010Fig2a

Fig. 2A from Herron et al. 2010. The traits characteristic of the genus Volvox—asexual forms with >500 cells, only a few of which are reproductive, and oogamy in sexual reproduction—have arisen at least three times independently: once in the section Volvox (represented by V. globator, V. barberi, and V. rousseletii), once in V. gigas, and once or possibly twice in the remaining Volvox species. Branch shading indicates maximum-parsimony reconstruction (white = absent, black = present, dashed = ambiguous). Pie charts indicate Bayesian posterior probabilities at selected nodes. Numbers to the left of cladograms indicate log-Bayes factors at selected nodes: positive = support for trait presence, negative = support for trait absence. Interpretation of log-Bayes factors is based on Kass and Raftery’s (1995) modification of Jeffreys (1961, Theory of probability. 3rd edn. Oxford Univ. Press, Oxford, UK.): 0 to 2, barely worth mentioning; 2 to 6, positive; 6 to 10, strong; >10, very strong. Boldface numbers following species names indicate Volvox developmental programs following Desnitski (1995).

[Read more…]

Volvox 2015: evolution

This is taking much longer than I ever expected; hopefully I can get through blogging about Volvox 2015 before registration opens for Volvox 2017!

The final session on day 1 (August 20) was chaired by Aurora Nedelcu from the University of New Brunswick. Dr. Nedelcu’s introduction emphasized some of the basic questions in evolutionary biology, aside from the origins of multicellularity and sex, on which volvocine research has provided insights: the evolution of morphological innovations, the relative importance of cis-regulatory changes vs. protein-coding changes, kin vs. group selection as competing explanations for the evolution of altruism, the evolution of soma and of indivisibility, the genetic basis of cellular differentiation, and the role of antagonistic pleiotropy (my hastily scribbled notes seem to say “antagonistic pleiotropy of olsl.” Is that supposed to be rls1? This is the cost of waiting too long to write. Maybe Aurora can clarify.).

[Read more…]